IAM Search
INDUSTRIAL CONTROL HANDBOOK - 0.1 AUTOMATE, EMIGRATE, LEGISLATE, OR EVAPORATE
Some manufacturers tried to lower prices by reducing manufacturing costs. They either automated or emigrated.
Many countries legislated trade barriers to keep high quality, low cost products out. Manufacturers who did nothing ... disappeared, often despite their own government's protective trade barriers.
Many consumers still choose imports over domestic products, but some North American manufacturers are now trying more thoughtful measures to meet the challenge.
Automation is a technique that can be used to reduce costs and/or to improve quality. Automation can increase manufacturing speed, while reducing cost. Automation can lead to products having consistent quality, perhaps even consistently good quality. Some manufacturers who automated survived. Others didn't. The ones who survived were those who used automation to improve quality. It often happened that improving quality led to reduced costs.
GO TO NEXT PAGE: INDUSTRIAL CONTROL HANDBOOK - 0.2 THE ENVIRONMENT FOR AUTOMATION
GO BACK TO PREVIOUS PAGE: INDUSTRIAL CONTROL HANDBOOK - TABLE OF CONTENTS


Related Articles
- What are the primary elements used for flow measurement ?
- Calibration Basics!
- Drives 101: Adjustable / Variable Frequency Drives
- Basic DC Electricity for Industrial Instrumentation
- AC Electricity : Transmission Lines
- Example: Boiler Water Level Control System
- Example: Wastewater Disinfection
- Other Types of Instruments
- Instrumentation Documents
- Instrumentation Documents - Process Flow Diagrams
- Instrumentation Documents - Loop Diagrams
- Instrumentation Documents - SAMA Diagrams
- Instrumentation Documents - Instrument and Process Equipment Symbols
- Instrumentation Documents - Instrumentation Identification Tags
- Programmable Logic Controllers
- PLC Logic Programming Part 1
- PLC Logic Programming Part 2
- Analog Electronic Instrumentation
- How To Teach Yourself PLC Programming
- Heat Exchanger Design
- Analog Electronics Instrumentation - Current Loops
- Troubleshooting Current Loops
- Internet Protocol (IP)
- Automation Test and Training Rig: The Making
- SPEEDTRONIC Mark VI Hardware Description
- SPEEDTRONIC Mark VI Control Software Philosophy
- INDUSTRIAL CONTROL HANDBOOK - 1.3 POSITION SENSORS
- INDUSTRIAL CONTROL HANDBOOK - 0.2 THE ENVIRONMENT FOR AUTOMATION
- INDUSTRIAL CONTROL HANDBOOK - 0.3 CONTROL OF AUTOMATION/PROCESS CONTROL
- INDUSTRIAL CONTROL HANDBOOK - 0.4 COMPONENTS IN AUTOMATION
- INDUSTRIAL CONTROL HANDBOOK - 0.5 INTERFACING AND SIGNAL CONDITIONING
- INDUSTRIAL CONTROL HANDBOOK - 0.6 SUMMARY
- INDUSTRIAL CONTROL HANDBOOK - 1.0 SENSORS
- INDUSTRIAL CONTROL HANDBOOK - 1.1 QUALITY OF SENSORS
- INDUSTRIAL CONTROL HANDBOOK - 1.2 SWITCHES AND TRANSDUCERS
- INDUSTRIAL CONTROL HANDBOOK - 1.4 VELOCITY AND ACCELERATION SENSORS
- INDUSTRIAL CONTROL HANDBOOK - 2.1 INTRODUCTION
- INDUSTRIAL CONTROL HANDBOOK - 2.2 SOLENOIDS AND TORQUE MOTORS
- INDUSTRIAL CONTROL HANDBOOK - 2.3 AIR-POWER ACTUATORS AND SOLENOID-ACTUATED VALVES
- INDUSTRIAL CONTROL HANDBOOK - 2.4 HYDRAULIC ACTUATORS AND VALVES
- INDUSTRIAL CONTROL HANDBOOK - 2.5 SPECIAL-PURPOSE ACTUATOR SYSTEMS
- INDUSTRIAL CONTROL HANDBOOK - 2.6 CONSTRUCTION OF ELECTRIC MOTORS
- INDUSTRIAL CONTROL HANDBOOK - 2.7 THEORY OF OPERATION OF ELECTRIC MOTORS
- INDUSTRIAL CONTROL HANDBOOK - 2.8 TYPES OF ELECTRIC MOTORS
- INDUSTRIAL CONTROL HANDBOOK - 2.9 CONTROL OF MOTORS
- INDUSTRIAL CONTROL HANDBOOK - 3.1 OVERVIEW OF SCRs, TRIACS, AND TRANSISTORS IN INDUSTRIAL APPLICATIONS
- INDUSTRIAL CONTROL HANDBOOK - 3.2 SILICON CONTROLLED RECTIFIERS (SCRs)
- INDUSTRIAL CONTROL HANDBOOK - 3.3 TRIACS
- INDUSTRIAL CONTROL HANDBOOK - 3.4 POWER TRANSISTORS
- INDUSTRIAL CONTROL HANDBOOK - 3.5 INSULATED GATE BIPOLAR TRANSISTORS
- INDUSTRIAL CONTROL HANDBOOK - 3.6 JUNCTION FIELD EFFECT TRANSISTOR (J-FETS)
- INDUSTRIAL CONTROL HANDBOOK - 3.7 COMPARISON OF POWER SEMICONDUCTORS
- INDUSTRIAL CONTROL HANDBOOK - 3.8 OPTOISOIATORS AND OPTOINTERRUPTERS
- INDUSTRIAL CONTROL HANDBOOK - 4.1 ELECTRONIC CONTROL OF DIRECT CURRENT MOTORS
- INDUSTRIAL CONTROL HANDBOOK - 4.2 ELECTRONIC CONTROL OF ALTERNATING CURRENT MOTORS