### IAM Search

## Summary of PID Control Terms

Proportional – sometimes called gain or sensitivity – is a control action reproducing changes in input as changes in output. Proportional controller action responds to present changes in input by generating immediate and commensurate changes in output. When you think of “proportional action” (P), think punctual: this control action works immediately (never too soon or too late) to match changes in the input signal.

Mathematically defined, proportional action is the ratio of output change to input change. This may be expressed as a quotient of differences, or as a derivative (a rate of change, using calculus notation):

For example, if the PV input of a proportional-only process controller with a gain of 2 suddenly changes (“steps”) by 5 percent, and the output will immediately jump by 10 percent (ΔOutput = Gain × ΔInput). The direction of this output jump in relation to the direction of the input jump depends on whether the controller is configured for direct or reverse action.

A legacy term used to express this same concept is proportional band: the mathematical reciprocal of gain. “Proportional band” is defined as the amount of input change necessary to evoke fullscale (100%) output change in a proportional controller. Incidentally, it is always expressed as a percentage, never as fraction or as a decimal:

Using the same example of a proportional controller exhibiting an output “step” of 10% in response to a PV “step” of 5%, the proportional band would be 50%: the reciprocal of its gain ( 1/2 = 50%). Another way of saying this is that a 50% input “step” would be required to change the output of this controller by a full 100%, since its gain is set to a value of 2.

Integral – sometimes called reset or floating control – is a control action causing the output signal to change over time at a rate proportional to the amount of error (the difference between PV and SP values). Integral controller action responds to error accumulated over time, ramping the output signal are far as it needs to go to completely eliminate error. If proportional (P) action tells the output how far to go when an error appears, integral (I) action tells the output how fast to move when an error appears. If proportional (P) action acts on the present, integral (I) action acts on the past. Thus, how far the output signal gets driven by integral action depends on the history of the error over time: how much error existed, and for how long. When you think of “integral action ” (I), think impatience: this control action drives the output further and further the longer PV fails to match SP.

Mathematically defined, integral action is the ratio of output velocity to input error:

An alternate way to express integral action is to use the reciprocal unit of “minutes per repeat.” If we define integral action in these terms, the defining equations must be reciprocated:

For example, if an error of 5% appears between PV and SP on an integral-only process controller with an integral value of 3 repeats per minute (i.e. an integral time constant of 0.333 minutes per repeat), the output will begin ramping at a rate of 15% per minute ( = Integral value × e, or = i). In most PI and PID controllers, integral response is also multiplied by proportional gain, so the same conditions applied to a PI controller that happened to also have a gain of 2 would result in an output ramping rate of 30% per minute ( = Gain value × Integral value × e, or = Gain value × i). The direction of this ramping in relation to the direction (sign) of the error depends on whether the controller is configured for direct or reverse action.

Derivative – sometimes called rate or pre-act – is a control action causing the output signal to be offset by an amount proportional to the rate at which the input is changing. Derivative controller action responds to how quickly the input changes over time, biasing the output signal commensurate with that rate of input change. If proportional (P) action tells the output how far to go when an error appears, derivative (D) action tells the output how far to go when the input ramps. If proportional (P) action acts on the present and integral (I) action acts on the past, derivative (D) action acts on the future: it effectively “anticipates” overshoot by tempering the output response according to how fast the process variable is rising or falling. When you think of “derivative action” (D), think discretion: this control action is cautious and prudent, working against change.

Mathematically defined, derivative action is the ratio of output offset to input velocity:

For example, if the PV signal begins to ramp at a rate of 5% per minute on a process controller with a derivative time constant of 4 minutes, the output will immediately become offset by 20% (ΔOutput = Derivative value × ). In most PD and PID controllers, derivative response is also multiplied by proportional gain, so the same conditions applied to a PD controller that happened to also have a gain of 2 would result in an immediate offset of 40% (ΔOutput = Gain value × Derivative value × ). The direction (sign) of this offset in relation to the direction of the input ramping depends on whether the controller is configured for direct or reverse action.

**Go Back to Lessons in Instrumentation Table of Contents**

### Related Articles

- Disassembly of a sliding-stem control valve
- Instrumentation Documents - Process and Instrument Diagrams
- Instrumentation Documents - SAMA Diagrams
- Conservation Laws
- Analog Electronic Instrumentation
- Pneumatic Instrumentation - Pilot Valves and Pneumatic Amplifying Relays
- Pneumatic Instrumentation - Analogy to OpAmp Circuits
- Machine Vibration Measurement - Vibration Sensors
- Machine Vibration Measurement - Monitoring Hardware
- Machine Vibration Measurement - Mechanical Vibration Switches
- Signal Characterization
- Doctor Strangeflow, or how I learned to relax and love Reynolds numbers
- Practical Calibration Standards - Temperature Standards
- Practical Calibration Standards - Pressure Standards
- The International System of Units
- Practical Calibration Standards - Flow Standards
- Fluid Mechanics - Torricelli’s Equation
- Fluid Mechanics - Flow Through a Venturi Tube
- Elementary Thermodynamics - Temperature
- Elementary Thermodynamics - Heat
- Industrial Physics Terms and Definitions
- Elementary Thermodynamics - Heat Transfer
- Elementary Thermodynamics - Specific Heat and Enthalpy
- Positive Displacement Flowmeters
- Mathematics for Industrial Instrumentation
- True Mass Flowmeters
- Process/Instrument Suitability of Flowmeters
- Machine Vibration Measurement
- Continuous Analytical Measurement - Safety Gas Analyzers
- Industrial Physics for Industrial Instrumentation
- Metric Prefixes
- Dimensional Analysis for Industrial Physics
- Classical Mechanics
- Elementary Thermodynamics
- Fluid Mechanics
- Chemistry for Instrumentation
- Continuous Analytical Measurement - Conductivity Measurement
- Fluid Mechanics - Pressure
- Fluid Mechanics - Pascal's Principle and Hydrostatic Pressure
- Fluid Mechanics - Manometers
- Fluid Mechanics - Systems of Pressure Measurement
- Fluid Mechanics - Buoyancy
- Fluid Mechanics - Gas Laws
- Fluid Mechanics - Fluid Viscosity
- Fluid Mechanics - Reynolds Number
- Fluid Mechanics - Viscous Flow
- Fluid Mechanics - Bernoulli’s Equation
- Elementary Thermodynamics - Phase Changes
- Elementary Thermodynamics - Phase Diagrams and Critical Points
- Elementary Thermodynamics - Thermodynamic Degrees of Freedom
- Elementary Thermodynamics - Applications of Phase Changes
- Continuous Analytical Measurement - pH Measurement
- Continuous Analytical Measurement - Chromatography
- Continuous Analytical Measurement - Optical Analyses
- Chemistry - Terms and Definitions
- Chemistry - Atomic Theory and Chemical Symbols
- Chemistry - Periodic Table of Elements
- Chemistry - Electronic Structure
- Chemistry - Spectroscopy
- Practical Calibration Standards - Analytical Standards
- Chemistry - Formulae for Common Chemical Compounds
- Chemistry - Molecular Quantities
- Chemistry - Energy in Chemical Reactions
- Chemistry - Periodic Table of the Ions
- Chemistry - Ions in Liquid Solutions
- Chemistry - pH
- Final Control Elements - Control Valves
- Final Control Elements - Variable-Speed Motor Controls
- Principles of Feedback Control
- Basic Feedback Control Principles
- On/Off Control
- Proportional -Only Control
- Proportional-Only Offset
- Integral (Reset) Control
- Derivative (Rate) Control
- P, I, and D Responses Graphed
- Different PID Equations
- Pneumatic PID Controllers
- Analog Electronic PID Controllers
- Digital PID Controllers
- Practical PID Controller Features
- Classified Areas and Electrical Safety Measures
- Concepts of Probability and Reliability
- Process Characterization
- Before You Tune...
- Quantitative PID Tuning Procedures
- Tuning Techniques Compared
- Process Safety and Instrumentation
- Notes to Students with Regards to Process Dynamics and PID Controller Tuning
- Basic Process Control Strategies
- Lessons in Instrumentation TOC
- Supervisory Control
- Cascade Control
- Ratio Control
- Relation Control
- Feedforward Control
- Feedforward with Dynamic Compensation
- Limit, Selector, and Override Controls
- Safety Instrumented Functions and Systems
- Instrument System Problem-Solving
- Control Valve Performance - Summary