### IAM Search

## Fluid Mechanics - Torricelli’s Equation

* *

This was discovered by Evangelista Torricelli almost 100 years prior to Bernoulli’s more comprehensive formulation. The velocity may be determined by solving for v after setting the potential and kinetic energy formulae equal to each other (since all potential energy at the upper height must translate into kinetic energy at the bottom, assuming no frictional losses):

Note how mass (m) simply disappears from the equation, neatly canceling on both sides. This means the nozzle velocity depends only on height, not the mass density of the liquid. It also means the velocity of the falling object depends only on height, not the mass of the object.

**Go Back to Lessons in Instrumentation Table of Contents**

Comments (0)

Write comment

### Related Articles

- Disassembly of a sliding-stem control valve
- Instrumentation Documents - Process and Instrument Diagrams
- Instrumentation Documents - SAMA Diagrams
- Conservation Laws
- Analog Electronic Instrumentation
- Machine Vibration Measurement - Vibration Sensors
- Machine Vibration Measurement - Monitoring Hardware
- Machine Vibration Measurement - Mechanical Vibration Switches
- Signal Characterization
- Doctor Strangeflow, or how I learned to relax and love Reynolds numbers
- Practical Calibration Standards - Temperature Standards
- Practical Calibration Standards - Pressure Standards
- The International System of Units
- Practical Calibration Standards - Flow Standards
- Fluid Mechanics - Flow Through a Venturi Tube
- Elementary Thermodynamics - Temperature
- Venturi Tubes and Basic Principles
- Square-Root Characterizations
- Elementary Thermodynamics - Heat
- Industrial Physics Terms and Definitions
- Elementary Thermodynamics - Heat Transfer
- Elementary Thermodynamics - Specific Heat and Enthalpy
- Positive Displacement Flowmeters
- Mathematics for Industrial Instrumentation
- True Mass Flowmeters
- Process/Instrument Suitability of Flowmeters
- Machine Vibration Measurement
- Continuous Analytical Measurement - Safety Gas Analyzers
- Industrial Physics for Industrial Instrumentation
- Metric Prefixes
- Unit Conversions and Physical Constants
- Dimensional Analysis for Industrial Physics
- Classical Mechanics
- Elementary Thermodynamics
- Fluid Mechanics
- Chemistry for Instrumentation
- Continuous Analytical Measurement - Conductivity Measurement
- Fluid Mechanics - Pressure
- Fluid Mechanics - Pascal's Principle and Hydrostatic Pressure
- Fluid Mechanics - Fluid Density Expressions
- Fluid Mechanics - Manometers
- Fluid Mechanics - Systems of Pressure Measurement
- Fluid Mechanics - Buoyancy
- Fluid Mechanics - Gas Laws
- Fluid Mechanics - Fluid Viscosity
- Fluid Mechanics - Reynolds Number
- Fluid Mechanics - Viscous Flow
- Fluid Mechanics - Bernoulli’s Equation
- Elementary Thermodynamics - Phase Changes
- Elementary Thermodynamics - Phase Diagrams and Critical Points
- Elementary Thermodynamics - Thermodynamic Degrees of Freedom
- Elementary Thermodynamics - Applications of Phase Changes
- Continuous Analytical Measurement - pH Measurement
- Continuous Analytical Measurement - Chromatography
- Continuous Analytical Measurement - Optical Analyses
- Chemistry - Terms and Definitions
- Chemistry - Atomic Theory and Chemical Symbols
- Chemistry - Periodic Table of Elements
- Chemistry - Electronic Structure
- Chemistry - Spectroscopy
- Practical Calibration Standards - Analytical Standards
- Chemistry - Formulae for Common Chemical Compounds
- Chemistry - Molecular Quantities
- Chemistry - Energy in Chemical Reactions
- Chemistry - Periodic Table of the Ions
- Chemistry - Ions in Liquid Solutions
- Chemistry - pH
- Final Control Elements - Control Valves
- Final Control Elements - Variable-Speed Motor Controls
- Principles of Feedback Control
- Basic Feedback Control Principles
- On/Off Control
- Proportional -Only Control
- Proportional-Only Offset
- Integral (Reset) Control
- Derivative (Rate) Control
- Summary of PID Control Terms
- P, I, and D Responses Graphed
- Different PID Equations
- Pneumatic PID Controllers
- Analog Electronic PID Controllers
- Digital PID Controllers
- Practical PID Controller Features
- Classified Areas and Electrical Safety Measures
- Concepts of Probability and Reliability
- Process Characterization
- Before You Tune...
- Quantitative PID Tuning Procedures
- Tuning Techniques Compared
- Process Safety and Instrumentation
- Notes to Students with Regards to Process Dynamics and PID Controller Tuning
- Basic Process Control Strategies
- Lessons in Instrumentation TOC
- Supervisory Control
- Cascade Control
- Ratio Control
- Relation Control
- Feedforward Control
- Feedforward with Dynamic Compensation
- Limit, Selector, and Override Controls
- Safety Instrumented Functions and Systems
- Instrument System Problem-Solving