### IAM Search

## Fluid Mechanics - Buoyancy

If we could somehow measure the weight of that water displaced, we would find it exactly equals the dry weight of the ship:

Archimedes’ Principle also explains why hot-air balloons and helium aircraft float. By filling a large enclosure with a gas that is less dense than the surrounding air, that enclosure experiences an upward (buoyant) force equal to the difference between the weight of the air displaced and the weight of the gas enclosed. If this buoyant force equals the weight of the craft and all it holds (cargo, crew, food, fuel, etc.), it will exhibit an apparent weight of zero, which means it will float. If the buoyant force exceeds the weight of the craft, the resultant force will cause an upward acceleration according to Newton’s Second Law of motion (F = ma).

Submarines also make use of Archimedes’ Principle, adjusting their buoyancy by adjusting the amount of water held by ballast tanks on the hull. Positive buoyancy is achieved by “blowing” water out of the ballast tanks with high-pressure compressed air, so the submarine weighs less (but still occupies the same hull volume and therefore displaces the same amount of water). Negative buoyancy is achieved by “flooding” the ballast tanks so the submarine weighs more. Neutral buoyancy is when the buoyant force exactly equals the weight of the submarine and the remaining water stored in the ballast tanks, so the submarine is able to “hover” in the water with no vertical acceleration or deceleration.

An interesting application of Archimedes’ Principle is the quantitative determination of an object’s density by submersion in a liquid. For instance, copper is 8.96 times as dense as water, with a mass of 8.96 grams per cubic centimeter (8.96 g/cm3) as opposed to water at 1.00 gram per cubic centimeter (1.00 g/cm3). If we had a sample of pure, solid copper exactly 1 cubic centimeter in volume, it would have a mass of 8.96 grams. Completely submerged in pure water, this same sample of solid copper would appear to have a mass of only 7.96 grams, because it would experience a buoyant force equivalent to the mass of water it displaces (1 cubic centimeter = 1 gram of water). Thus, we see that the difference between the dry mass (mass measured in air) and the wet mass (mass measured when completely submerged in water) is the mass of the water displaced. Dividing the sample’s dry mass by this mass difference (dry − wet mass) yields the ratio between the sample’s mass and the mass of an equivalent volume of water, which is the very definition of specific gravity. The same calculation yields a quantity for specific gravity if weights instead of masses are used, since weight is nothing more than mass multiplied by the acceleration of gravity (Fweight = mg), and the constant g cancels out of both numerator and denominator:

Another application of Archimedes’ Principle is the use of a hydrometer for measuring liquid density. If a narrow cylinder of precisely known volume and weight (most of the weight concentrated at one end) is immersed in liquid, that cylinder will sink to a level dependent on the liquid’s density. In other words, it will sink to a level sufficient to displace its own weight in fluid. Calibrated marks made along the cylinder’s length may then serve to register liquid density in any unit desired. A simple style of hydrometer used to measure the density of lead-acid battery electrolyte is shown in this illustration:

To use this hydrometer, you must squeeze the rubber bulb at the top and dip the open end of the tube into the liquid to be sampled. Relaxing the rubber bulb will draw a sample of liquid up into the tube where it immerses the float. When enough liquid has been drawn into the tube to suspend the float so that it neither rests on the bottom of the tapered glass tube or “tops out” near the bulb, the liquid’s density may be read at the air/liquid interface.

A denser electrolyte liquid results in the float rising to a higher level inside the hydrometer tube:

The following photograph shows a set of antique hydrometers used to measure the density of beer. The middle hydrometer bears a label showing its calibration to be in degrees Baum´e (heavy):

Liquid density measurement is useful in the alcoholic beverage industry to infer alcohol content. Since alcohol is less dense than water, a sample containing a greater concentration of alcohol (a greater proof rating) will be less dense than a “weaker” sample, all other factors being equal.

A less sophisticated version of hydrometer uses multiple balls of differing density. A common application for such a hydrometer is in measuring the concentration of “antifreeze” coolant for automobile engines. The denser the sample liquid, the more of the balls will float (and fewer will sink):

This form of instrument yields a qualitative assessment of liquid density as opposed to the quantitative measurement given by a hydrometer with calibrated marks on a single float. When used to measure the density of engine coolant, a greater number of floating balls represents a “stronger” concentration of glycol in the coolant. “Weak” glycol concentrations represent a greater percentage of water in the coolant, with a correspondingly greater freezing temperature.

**Go Back to Lessons in Instrumentation Table of Contents**

### Related Articles

- Disassembly of a sliding-stem control valve
- Instrumentation Documents - Process and Instrument Diagrams
- Instrumentation Documents - SAMA Diagrams
- Conservation Laws
- Analog Electronic Instrumentation
- Machine Vibration Measurement - Vibration Sensors
- Machine Vibration Measurement - Monitoring Hardware
- Machine Vibration Measurement - Mechanical Vibration Switches
- Signal Characterization
- Doctor Strangeflow, or how I learned to relax and love Reynolds numbers
- Practical Calibration Standards - Temperature Standards
- Practical Calibration Standards - Pressure Standards
- The International System of Units
- Practical Calibration Standards - Flow Standards
- Fluid Mechanics - Torricelli’s Equation
- Fluid Mechanics - Flow Through a Venturi Tube
- Elementary Thermodynamics - Temperature
- Elementary Thermodynamics - Heat
- Industrial Physics Terms and Definitions
- Elementary Thermodynamics - Heat Transfer
- Elementary Thermodynamics - Specific Heat and Enthalpy
- Positive Displacement Flowmeters
- Mathematics for Industrial Instrumentation
- True Mass Flowmeters
- Process/Instrument Suitability of Flowmeters
- Machine Vibration Measurement
- Continuous Analytical Measurement - Safety Gas Analyzers
- Industrial Physics for Industrial Instrumentation
- Metric Prefixes
- Unit Conversions and Physical Constants
- Dimensional Analysis for Industrial Physics
- Classical Mechanics
- Elementary Thermodynamics
- Fluid Mechanics
- Chemistry for Instrumentation
- Continuous Analytical Measurement - Conductivity Measurement
- Fluid Mechanics - Pressure
- Fluid Mechanics - Pascal's Principle and Hydrostatic Pressure
- Fluid Mechanics - Fluid Density Expressions
- Fluid Mechanics - Manometers
- Fluid Mechanics - Systems of Pressure Measurement
- Fluid Mechanics - Gas Laws
- Fluid Mechanics - Fluid Viscosity
- Fluid Mechanics - Reynolds Number
- Fluid Mechanics - Viscous Flow
- Fluid Mechanics - Bernoulli’s Equation
- Elementary Thermodynamics - Phase Changes
- Elementary Thermodynamics - Phase Diagrams and Critical Points
- Elementary Thermodynamics - Thermodynamic Degrees of Freedom
- Elementary Thermodynamics - Applications of Phase Changes
- Continuous Analytical Measurement - pH Measurement
- Continuous Analytical Measurement - Chromatography
- Continuous Analytical Measurement - Optical Analyses
- Chemistry - Terms and Definitions
- Chemistry - Atomic Theory and Chemical Symbols
- Chemistry - Periodic Table of Elements
- Chemistry - Electronic Structure
- Chemistry - Spectroscopy
- Practical Calibration Standards - Analytical Standards
- Chemistry - Formulae for Common Chemical Compounds
- Chemistry - Molecular Quantities
- Chemistry - Energy in Chemical Reactions
- Chemistry - Periodic Table of the Ions
- Chemistry - Ions in Liquid Solutions
- Chemistry - pH
- Final Control Elements - Control Valves
- Final Control Elements - Variable-Speed Motor Controls
- Principles of Feedback Control
- Basic Feedback Control Principles
- On/Off Control
- Proportional -Only Control
- Proportional-Only Offset
- Integral (Reset) Control
- Derivative (Rate) Control
- Summary of PID Control Terms
- P, I, and D Responses Graphed
- Different PID Equations
- Pneumatic PID Controllers
- Analog Electronic PID Controllers
- Digital PID Controllers
- Practical PID Controller Features
- Classified Areas and Electrical Safety Measures
- Concepts of Probability and Reliability
- Process Characterization
- Before You Tune...
- Quantitative PID Tuning Procedures
- Tuning Techniques Compared
- Process Safety and Instrumentation
- Notes to Students with Regards to Process Dynamics and PID Controller Tuning
- Basic Process Control Strategies
- Lessons in Instrumentation TOC
- Supervisory Control
- Cascade Control
- Ratio Control
- Relation Control
- Feedforward Control
- Feedforward with Dynamic Compensation
- Limit, Selector, and Override Controls
- Safety Instrumented Functions and Systems
- Instrument System Problem-Solving