### IAM Search

## Elementary Thermodynamics - Thermodynamic Degrees of Freedom

Such is not the case at any point lying on one of the phase transition curves. Any point along a curve is geometrically defined by a pair of coordinates, which means that for a two-phase mixture in equilibrium there will be exactly one temperature value valid for each unique pressure value. At any point along a phase transition curve, pressure and temperature are not independent variable, but rather are related. For any single substance, there is only one degree of freedom along any point of a phase transition curve.

To illustrate this concept, suppose we equip a closed vessel containing water with both a thermometer and a pressure gauge. The thermometer measures the temperature of this water, while the pressure gauge measures the pressure of the water. A burner beneath the vessel adds heat to alter the water’s temperature, and a pump adds water to the vessel to alter the pressure inside:

Our freedom to alter pressure and temperature becomes even more restricted if we ever reach the triple point of the substance. For water, this occurs (only) at a pressure of -14.61 PSIG (0.006 atmospheres) and a temperature of 0.01 degrees Celsius: the coordinates where all three phase transition curves intersect on the phase diagram. In this state, where solid (ice), liquid (water), and vapor (steam) coexist, there are zero degrees of thermodynamic freedom. Both the temperature and pressure are locked at these values until one or more of the phases disappears.

The relationship between degrees of freedom and phases is expressed neatly by Gibbs’ Phase Rule – the sum of phases and degrees of freedom equals the number of substances (“components”) plus two:

We may simplify Gibbs’ rule for systems of just one substance (1 “component”) by saying the number of degrees of freedom plus phases in direct contact with each other is always equal to three. So, a vessel filled with nothing but liquid water (one component, one phase) will have two thermodynamic degrees of freedom: we may change pressure or temperature independently of one another. A vessel containing nothing but boiling water (two phases – water and steam, but still only one component) has just one thermodynamic degree of freedom: we may change pressure and temperature, but just not independently of one another. A vessel containing water at its triple point (three phases, one component) has no thermodynamic freedom at all: both temperature and pressure are fixed_{1} so long as all three phases coexist in equilibrium.

_{1}The non-freedom of both pressure and temperature for a pure substance at its triple point means we may exploit different substances’ triple points as calibration standards for both pressure and temperature. Using suitable laboratory equipment and samples of sufficient purity, anyone in the world may force a substance to its triple point and calibrate pressure and/or temperature instruments against that sample.

**Go Back to Lessons in Instrumentation Table of Contents**

### Related Articles

- Disassembly of a sliding-stem control valve
- Instrumentation Documents - Process and Instrument Diagrams
- Instrumentation Documents - SAMA Diagrams
- Conservation Laws
- Analog Electronic Instrumentation
- Machine Vibration Measurement - Vibration Sensors
- Machine Vibration Measurement - Monitoring Hardware
- Machine Vibration Measurement - Mechanical Vibration Switches
- Signal Characterization
- Doctor Strangeflow, or how I learned to relax and love Reynolds numbers
- Practical Calibration Standards - Temperature Standards
- Practical Calibration Standards - Pressure Standards
- The International System of Units
- Practical Calibration Standards - Flow Standards
- Fluid Mechanics - Torricelli’s Equation
- Fluid Mechanics - Flow Through a Venturi Tube
- Elementary Thermodynamics - Temperature
- Elementary Thermodynamics - Heat
- Industrial Physics Terms and Definitions
- Elementary Thermodynamics - Heat Transfer
- Elementary Thermodynamics - Specific Heat and Enthalpy
- Positive Displacement Flowmeters
- Mathematics for Industrial Instrumentation
- True Mass Flowmeters
- Process/Instrument Suitability of Flowmeters
- Machine Vibration Measurement
- Continuous Analytical Measurement - Safety Gas Analyzers
- Industrial Physics for Industrial Instrumentation
- Metric Prefixes
- Unit Conversions and Physical Constants
- Dimensional Analysis for Industrial Physics
- Classical Mechanics
- Elementary Thermodynamics
- Fluid Mechanics
- Chemistry for Instrumentation
- Continuous Analytical Measurement - Conductivity Measurement
- Fluid Mechanics - Pressure
- Fluid Mechanics - Pascal's Principle and Hydrostatic Pressure
- Fluid Mechanics - Fluid Density Expressions
- Fluid Mechanics - Manometers
- Fluid Mechanics - Systems of Pressure Measurement
- Fluid Mechanics - Buoyancy
- Fluid Mechanics - Gas Laws
- Fluid Mechanics - Fluid Viscosity
- Fluid Mechanics - Reynolds Number
- Fluid Mechanics - Viscous Flow
- Fluid Mechanics - Bernoulli’s Equation
- Elementary Thermodynamics - Phase Changes
- Elementary Thermodynamics - Phase Diagrams and Critical Points
- Elementary Thermodynamics - Applications of Phase Changes
- Continuous Analytical Measurement - pH Measurement
- Continuous Analytical Measurement - Chromatography
- Continuous Analytical Measurement - Optical Analyses
- Chemistry - Terms and Definitions
- Chemistry - Atomic Theory and Chemical Symbols
- Chemistry - Periodic Table of Elements
- Chemistry - Electronic Structure
- Chemistry - Spectroscopy
- Practical Calibration Standards - Analytical Standards
- Chemistry - Formulae for Common Chemical Compounds
- Chemistry - Molecular Quantities
- Chemistry - Energy in Chemical Reactions
- Chemistry - Periodic Table of the Ions
- Chemistry - Ions in Liquid Solutions
- Chemistry - pH
- Final Control Elements - Control Valves
- Final Control Elements - Variable-Speed Motor Controls
- Principles of Feedback Control
- Basic Feedback Control Principles
- On/Off Control
- Proportional -Only Control
- Proportional-Only Offset
- Integral (Reset) Control
- Derivative (Rate) Control
- Summary of PID Control Terms
- P, I, and D Responses Graphed
- Different PID Equations
- Pneumatic PID Controllers
- Analog Electronic PID Controllers
- Digital PID Controllers
- Practical PID Controller Features
- Classified Areas and Electrical Safety Measures
- Concepts of Probability and Reliability
- Process Characterization
- Before You Tune...
- Quantitative PID Tuning Procedures
- Tuning Techniques Compared
- Process Safety and Instrumentation
- Notes to Students with Regards to Process Dynamics and PID Controller Tuning
- Basic Process Control Strategies
- Lessons in Instrumentation TOC
- Supervisory Control
- Cascade Control
- Ratio Control
- Relation Control
- Feedforward Control
- Feedforward with Dynamic Compensation
- Limit, Selector, and Override Controls
- Safety Instrumented Functions and Systems
- Instrument System Problem-Solving