IAM Search
Instrumentation Documents - SAMA Diagrams
A sample SAMA diagram appears here, showing a flow transmitter (FT) sending a process variable signal to a PID controller, which then sends a manipulated variable signal to a flow control valve (FCV):
A cascaded control system, where the output of one controller acts as the setpoint for another controller to follow, appears in SAMA diagram form like this:
In this case, the primary controller senses the level in a vessel, commanding the secondary (flow) controller to maintain the necessary amount of flow either in or out of the vessel as needed to maintain level at some setpoint.
SAMA diagrams may show varying degrees of detail about the control strategies they document. For example, you may see the auto/manual controls represented as separate entities in a SAMA diagram, apart from the basic PID controller function. In the following example, we see a transfer block (T) and two manual adjustment blocks (A) providing a human operator the ability to separately adjust the controller’s setpoint and output (manipulated) variables, and to transfer between automatic and manual modes:
Rectangular blocks such as the _, P, I, and D shown in this diagram represent automatic functions. Diamond-shaped blocks such as the A and T blocks are manual functions which must be set by a human operator. Showing even more detail, the following SAMA diagram indicates the presence of setpoint tracking in the controller algorithm, a feature that forces the setpoint value to equal the process variable value any time the controller is in manual mode:
Here we see a new type of line: dashed instead of solid. This too has meaning in the world of SAMA diagrams. Solid lines represent analog (continuously variable) signals such as process variable, setpoint, and manipulated variable. Dashed lines represent discrete (on/off) signal paths, in this case the auto/manual state of the controller commanding the PID algorithm to get its setpoint either from the operator’s input (A) or from the process variable input (the flow transmitter: FT).
• Click here for the front page of this Instrumentation Documents article
• Click here for Process Flow Diagrams (PFDs)
• Click here for Process and Instrument diagrams (P&IDs)
• Click here for Loop diagrams (“loop sheets”)
• Click here for Instrument and Process Equipment Symbols
• Click here for Instrumentation Identification Tags
Go Back to Lessons in Instrumentation Table of Contents


written by mohammad, December 22, 2012

written by AS, July 07, 2014
then i found your posts, and you saved my life!

written by Mahesh Kumar Dubey, August 28, 2014

written by J Leland Kallmyer, March 12, 2015

written by jerry smith , October 22, 2015

Related Articles
- Learn Ladder Logic with a Free Version of RSLogix 500 and RSEmulator 500
- A Quick Tutorial on RSLogix Emulator 5000
- What Are Those IP Codes Found On The Instrument Enclosures?
- Electrical / Instrumentation Engineer for Nestle Philippines
- What are the Process Variables?
- What are the primary elements used for flow measurement ?
- Cotabato Sugar Central Co., Inc. - Various Jobs for immediate hiring
- Piping and Instrumentation Diagram (P&ID) Symbols
- Calibration Basics!
- Drives 101: Adjustable / Variable Frequency Drives
- Basic DC Electricity for Industrial Instrumentation
- AC Electricity : Transmission Lines
- Introduction to Industrial Instrumentation
- Example: Boiler Water Level Control System
- Example: Wastewater Disinfection
- Example: chemical reactor temperature control
- Other Types of Instruments
- Disassembly of a sliding-stem control valve
- Instrumentation Documents
- Instrument Connections
- Discrete Process Measurement - Level Switches
- Discrete Process Measurement - Temperature Switches
- Instrumentation Documents - Process and Instrument Diagrams
- Instrumentation Documents - Process Flow Diagrams
- Instrumentation Documents - Loop Diagrams
- Instrumentation Documents - Instrument and Process Equipment Symbols
- Instrumentation Documents - Instrumentation Identification Tags
- Discrete Process Measurement - Hand Switches
- Discrete Process Measurement - Limit Switches
- Discrete Process Measurement - Proximity Switches
- Discrete Process Measurement - Pressure Switches
- Programmable Logic Controllers
- Discrete Control Elements - On/Off Electric Motor Control Circuits
- PLC Logic Programming Part 1
- PLC Logic Programming Part 2
- PLC Logic Programming Part 3
- Conservation Laws
- Analog Electronic Instrumentation
- How To Teach Yourself PLC Programming
- PLC Input/Output (I/O) Capabilities
- Heat Exchanger Design
- Digital Data Communication Theory
- Analog Electronics Instrumentation - Current Loops
- Troubleshooting Current Loops
- Introduction - Digital Data Acquisition and Networks
- Machine Vibration Measurement - Vibration Sensors
- EIA/TIA-232, 422, and 485 Networks
- Ethernet Networks
- Internet Protocol (IP)
- Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
- The HART Digital/Analog Hybrid Standard
- Modbus
- Machine Vibration Measurement - Monitoring Hardware
- Machine Vibration Measurement - Mechanical Vibration Switches
- Signal Characterization
- Doctor Strangeflow, or how I learned to relax and love Reynolds numbers
- Introduction to SPEEDTRONIC Mark VI
- Practical Calibration Standards - Temperature Standards
- Practical Calibration Standards - Pressure Standards
- The International System of Units
- Practical Calibration Standards - Flow Standards
- Fluid Mechanics - Torricelli’s Equation
- Fluid Mechanics - Flow Through a Venturi Tube
- Elementary Thermodynamics - Temperature
- Elementary Thermodynamics - Heat
- Industrial Physics Terms and Definitions
- Elementary Thermodynamics - Heat Transfer
- Elementary Thermodynamics - Specific Heat and Enthalpy
- Positive Displacement Flowmeters
- Mathematics for Industrial Instrumentation
- True Mass Flowmeters
- Process/Instrument Suitability of Flowmeters
- Machine Vibration Measurement
- Continuous Analytical Measurement - Safety Gas Analyzers
- Industrial Physics for Industrial Instrumentation
- Metric Prefixes
- Dimensional Analysis for Industrial Physics
- Classical Mechanics
- Elementary Thermodynamics
- Fluid Mechanics
- Chemistry for Instrumentation
- Continuous Analytical Measurement - Conductivity Measurement
- Fluid Mechanics - Pressure
- Fluid Mechanics - Pascal's Principle and Hydrostatic Pressure
- Fluid Mechanics - Manometers
- Fluid Mechanics - Systems of Pressure Measurement
- Fluid Mechanics - Buoyancy
- Fluid Mechanics - Gas Laws
- Fluid Mechanics - Fluid Viscosity
- Fluid Mechanics - Reynolds Number
- Fluid Mechanics - Viscous Flow
- Fluid Mechanics - Bernoulli’s Equation
- Elementary Thermodynamics - Phase Changes
- Elementary Thermodynamics - Phase Diagrams and Critical Points
- Elementary Thermodynamics - Thermodynamic Degrees of Freedom
- Elementary Thermodynamics - Applications of Phase Changes
- Continuous Analytical Measurement - pH Measurement
- Continuous Analytical Measurement - Chromatography
- Continuous Analytical Measurement - Optical Analyses
- Chemistry - Terms and Definitions
- Chemistry - Atomic Theory and Chemical Symbols
- Chemistry - Periodic Table of Elements
- Chemistry - Electronic Structure
- Chemistry - Spectroscopy
- Practical Calibration Standards - Analytical Standards
- Chemistry - Formulae for Common Chemical Compounds
- Chemistry - Molecular Quantities
- Chemistry - Energy in Chemical Reactions
- Chemistry - Periodic Table of the Ions
- Chemistry - Ions in Liquid Solutions
- Chemistry - pH
- Final Control Elements - Control Valves
- Final Control Elements - Variable-Speed Motor Controls
- Principles of Feedback Control
- Basic Feedback Control Principles
- On/Off Control
- Proportional -Only Control
- Proportional-Only Offset
- Integral (Reset) Control
- Derivative (Rate) Control
- Summary of PID Control Terms
- P, I, and D Responses Graphed
- Different PID Equations
- Pneumatic PID Controllers
- Analog Electronic PID Controllers
- Digital PID Controllers
- Practical PID Controller Features
- Classified Areas and Electrical Safety Measures
- Concepts of Probability and Reliability
- Process Characterization
- Before You Tune...
- Quantitative PID Tuning Procedures
- Tuning Techniques Compared
- Process Safety and Instrumentation
- Notes to Students with Regards to Process Dynamics and PID Controller Tuning
- Basic Process Control Strategies
- Lessons in Instrumentation TOC
- Supervisory Control
- Cascade Control
- Ratio Control
- Relation Control
- Feedforward Control
- Feedforward with Dynamic Compensation
- Limit, Selector, and Override Controls
- Safety Instrumented Functions and Systems
- Instrument System Problem-Solving
- Automation Test and Training Rig: The Making
- SPEEDTRONIC Mark VI Hardware Description
- SPEEDTRONIC Mark VI Control Software Philosophy
- SPEEDTRONIC Mark VI Protection Systems
- INDUSTRIAL CONTROL HANDBOOK - 0.1 AUTOMATE, EMIGRATE, LEGISLATE, OR EVAPORATE